COURSE INFORMATON							
Course Title	Code	Semester	L+P Hour	Credits	ECTS		
ADVANCED CHEMICAL ENGINEERING I:FLUID MECHANICS	CHBE 531				10		

Prerequisites	NONE
Language of Instruction	English
Course Level	Master's Degree (Second Cycle Programmes)
Course Type	Compulsory
Course Coordinator	
Instructors	
Assistants	
Goals	The aim of this course is to provide students with the ability to model fluid behavior in complex systems and solve model equations using analytical and numerical techniques.
Content	Incompressible flow, potential flow. Compressible flow. Thermodynamics of flow. Viscous flow, creeping flow. Turbulent flow. Boundary layer theory. Some exact and approximate solutions of Navier-Stokes equations.

Course Learning Outcomes	Program Learning Outcomes	Teaching Methods	Assessment Methods
1) Ability to derive models for flow systems in a hierarchy of levels from the simplest to the most complex using the fundamental laws of physics	2,4	1,2	A,C
2) Ability to solve ordinary and partial differential model equations using analytical and numerical techniques	2,4	1,2	A,C
3) Ability to communicate effectively in English	8	1,2	A,C

Teaching Methods:	1: Lecture, 2: Question-Answer, 3: Lab, 4: Case-study
Assessment Methods:	A: Testing, B: Experiment, C: Homework, D: Project

	COURSE CONTENT					
Week Topics		Study Materials				
1	INCOMPRESSIBLE FLOW	Lecture Notes				
2	INCOMPRESSIBLE FLOW	Lecture Notes				
3	POTENTIAL FLOW	Lecture Notes				
4	COMPRESSIBLE FLOW	Lecture Notes				
5	COMPRESSIBLE FLOW	Lecture Notes				
6	THERMODYNAMICS OF FLOW	Lecture Notes				
7	MIDTERM EXAM I	LectureNotes				
8	VISCOUS FLOW	Lecture Notes				
9	CREEPING FLOW	Lecture Notes				
10	TURBULENT FLOW	Lecture Notes				
11	BOUNDARY LAYER THEORY	Lecture Notes				
12	BOUNDARY LAYER THEORY	Lecture Notes				
13	NUMERICAL SOLUTIONS OF DIFFERENTIAL EQUATIONS	Lecture Notes				
14	MIDTERM EXAM II	LectureNotes				

RECOMMENDED SOURCES				
Textbook				
Additional Resources	John C. Slattery, Advanced Transport Phenomena, 1999			

MATERIAL SHARING				
Documents				
Assignments				
Exams				

ASSESSMENT				
IN-TERM STUDIES	NUMBER	PERCENTAGE		
Mid-terms	2	63		
Assignment	5	37		
Total		100		
CONTRIBUTION OF FINAL EXAMINATION TO OVERALL GRADE		40		
CONTRIBUTION OF IN-TERM STUDIES TO OVERALL GRADE		60		
Total		100		

COURSE	CATEGORY
COORSE	CALLOUNT

Field Courses

	COURSE'S CONTRIBUTION TO PROGRAM							
No	Program Learning Outcomes	Contribution						
			2	3	4	5		
1	Acquire expanded and in-depth information via performing scientific research in the field of Chemical Engineering, evaluate, interpret and implement knowledge.							
2	Be knowledgable in the contemporary techniques and methods applied in Chemical Engineering and their respective constraints.					+		
3	Be cognizant of the novel and developing applications of his/her profession, study and learn them as required.							
4	Formulate Chemical Engineering problems, develop methods to solve them and implement innovative techniques in solutions					+		
5	Design and conduct analytical modeling and experimental research, analyze and interpret complex problems encountered in this process.							
6	Develop novel and/or original ideas and methods; conceive innovative solutions in systems, component and process design							
7	Complete information via processing limited or incomplete data by the use of scientific methods and implement it; integrate knowledge from different disciplines							
8	Communicate in at least one foreign language at the level of European Language Portfolio B2 orally and in writing.			+				
9	Communicate stages and results of his/her studies in a systematic and clear manner orally or in writing in intra or interdisciplinary national and international settings.							
10	Defines societal and environmental aspects of Chemical Engineering applications							

11	Observe social, scientific and ethical values during collection, interpretation, and dissemination of data and in all professional activities.
12	Lead multidisciplinary teams, develop solution methodologies for complex problems and take responsibility

ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION						
Activities	Quantity	Duration (Hour)	Total Workload (Hour)			
Course Duration (Including the exam week: 16x Total course hours)	14	4	56			
Hours for off-the-classroom study (Pre-study, practice)	14	10	140			
Mid-terms	2	3	6			
Ödev	5	8	40			
Final examination	1	3	3			
Total Work Load			245			
Total Work Load / 25 (h)			9.8			
ECTS Credit of the Course			10			